Understanding the Human Oral Microbiome with Next-Generation Sequencing Technologies

Next Generation Sequencing and Oralgen2.0

<u>www.lanl.gov/bioscience</u> <u>www.oralgen.lanl.gov</u>

Patrick Chain

pchain@lanl.gov

Metagenomics Applications Team, LANL Metagenomics Program, JGI

July 2010

Genomics and Bioinformatics at LANL

1982 William Office Affairs Office Human Genome Studies for the 21st

GenBa

The Los Alamos Center for Human

1990

HIV Sequence

1995

Influenza Sequence

1997

Joint Genome

1999

Oral Pathogen Sequence

LBNL

LANL

HudsonAlpha

Institute

ukarvotic Finishing

LLNL

Informatics, Comparative and Functional Genomics ORNL Microbial Annotation

PNNL

Proteomics

Growth of Sequence Databases

Genome projects: A growing problem

Behind the Surge: NGS Technologies

§ The advent of 2nd generation sequencing technologies has revolutionized the genomics field!

Driving the cost down: a new way to do business...

When "more" isn't just more!

Los Alamos NATIONAL LABORATORY

More on this at NGS workshop!! 11:45am Fri. Room 133

Oral pathogen sequence repository

www.oralgen.lanl.gov

Goal to Maintain/Improve an Analytical Resource

- Conduct Specialized Annotation and Other Analyses:
 - Hypothetical protein ranking for P. gingivalis and S. mutans
 - Protein cellular localization prediction
 - Metabolic pathways and transport capability analysis
 - Recent gene duplication, insertion sequence, conjugative transposons, and "Genomic Island" predictions
 - Small, non-coding RNAs (sRNAs) prediction
 - Phylogenetic fingerprints
 - etc.
- Advanced searching capabilities
- Provide comparative genomic tools (like StepToto DB)
- Links to other oral microbiome/pathogen resources

New site up – slow and steady...

New technologies, new challenges!!

§ Keeping up!

- Oralgen v2.0
- How to feed the sequencing monsters
- How to handle the data (store, analyze)

§ What to do with a few hundret thousand reads?

de novo sequencing (and finishing!)

How quickly things change...

Sanger libraries

Paired ends

454 libraries (150-450 bp No paired ends)

New Tech

454 tandard libraries (400 bases long

454 Paired ends (Paired ends with reads of 150 bp - Average insert 15-20 kg)

Solexa (Illumina) 150 bp inserts with reads of 36 bp (one end)

Genome Assembly with NGS technology

Genome Assembly with NGS technology

Contigs (consensus

**Corrected sequences, but still many gaps generally

Improved NGS assembly

Kingella kingae	Original assembly	LANL improved assembly
Assembled_reads:		98.03%
Singleton:		2,388
Contigs_number:	180	101
N50:	21,244	54,948
N90:	6,210	11,656
Max:	76,431	188,302
Min:	103	110
Total_bases:	1,942,587	2,012,773

Input

↓
Q
C
↓
Filter
↓
Trim
↓
Assemble
↓
Merge data

Can also suggest primers for genome closure (ie. Finishing)

New technologies, new challenges!!

§ Keeping up!

- Oralgen v2.0
- How to feed the sequencing monsters
- How to handle the data (store, analyze)

§ What to do with a few hundret thousand reads?

- de novo sequencing (and finishing!)
- Re-sequencing and Transcriptomics (RNAseq)

Mapping reads to a reference sequence

Uneven coverage revelations

Transcriptome (RNA-sequencing)

New technologies, new challenges!!

§ Keeping up!

- Oralgen v2.0
- How to feed the sequencing monsters
- How to handle the data (store, analyze)

§ What to do with a few hundret thousand reads?

- de novo sequencing (and finishing!)
- Re-sequencing and Transcriptomics
- Metagenomics (both rRNA surveys and shotgun "environmental" sequencing)

Metagenomic (16S) population surveys

"Pyrotags" gaining the upper hand: 200,000 to 1,000,000 reads per run

- Much higher resolution than Sanger 16S surveys
- Has highlighted "rare biosphere"
- May even allow saturation of diversity in a given habitat

Improving Classification Tools

§ RDP Naïve Bayesian Classifier: a very fast and accurate taxonomy assignment algorithm

- § LANL has applied a Markov model to enhance accuracy while maintaining speed
- § Also, the LANL Markov NBC will be trained on oral microbes so may be more accurate
 - Will provide on Oralgen2.0!

However: only tells us who is there...

not what they are doing...

"Next Gen" metagenomics: Sequencing technology changing the landscape

Assemble and Map reads

Gene calls/annotation

Bin fragments

Current Impediments....

- S Different methods (assembly algorithms) and different technologies result in different contigs:
 - 12,500 total (5kb max)
 - 287,000 total (30kb max)
 - For either: only ~50% of reads get assembled still!!
- Very different answers when varying parameters...

Binning and other issues....

§ Binning methods do not yet work on short reads

Binning and other issues....

- § Binning methods do not yet work on short reads
- § Annotation of metagenomic contigs takes time!
- § Read-based analyses take many CPU hours; so often look only at assembled contigs (ie. ~50% of the data)

Can one reduce complexity of the data/sample?

Binning via sequence recruitment...

What, of who, is present...

Can "recruit" reads and contigs to many reference genomes

New technologies, new challenges!!

§ Keeping up!

Oralgen v2.0

- How to feed the sequencing monsters
- How to handle the data (store, analyze)

§ What to do with a few hundret thousand reads?

- de novo sequencing (and finishing!)
- Re-sequencing and Transcriptomics
- Metagenomics (both rRNA surveys and shotgun "environmental" sequencing)
- Single cell genomics

Single cell genomics

Los Alamos NATIONAL LABORATORY ORALGEN PORMA

Dealing with NGS Technology

- 1. Make *de novo* and re-sequencing of oral microbiome isolates and single cells a trivial task for investigators
- 1. Provide a tailored metagenomic population survey resource and analysis suite

 Markov NB Classifier
- 1. Develop and provide automated and semi-automated (meta)genomics analysis tools (coupled with manual-curation/enhancement) Refined annotations

1. Integrate the above, and work with experts to provide the community with a comprehensive genomics work environment comprehensive genomics work

Acknowledgements

